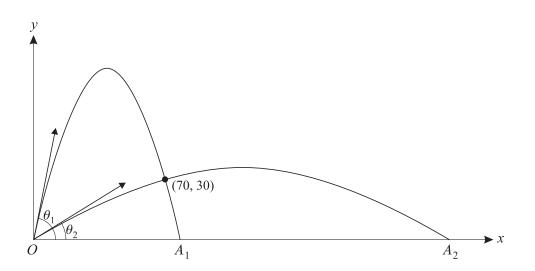
OCR Maths M2

Topic Questions from Papers

Projectiles


PhysicsAndMathsTutor.com

1 A particle is projected horizontally with a speed of 6 m s^{-1} from a point 10 m above horizontal ground. The particle moves freely under gravity. Calculate the speed and direction of motion of the particle at the instant it hits the ground. [6]

(Q2, June 2005)

- **2** A particle is projected with speed 49 m s^{-1} at an angle of elevation θ from a point *O* on a horizontal plane, and moves freely under gravity. The horizontal and upward vertical displacements of the particle from *O* at time *t* seconds after projection are *x* m and *y* m respectively.
 - (i) Express x and y in terms of θ and t, and hence show that

$$y = x \tan \theta - \frac{x^2(1 + \tan^2 \theta)}{490}.$$
 [4]

The particle passes through the point where x = 70 and y = 30. The two possible values of θ are θ_1 and θ_2 , and the corresponding points where the particle returns to the plane are A_1 and A_2 respectively (see diagram).

- (ii) Find θ_1 and θ_2 . [4]
- (iii) Calculate the distance between A_1 and A_2 .

(Q8, June 2005)

[5]

3 A golfer hits a ball from a point *O* on horizontal ground with a velocity of 50 m s^{-1} at an angle of 25° above the horizontal. The ball first hits the ground at a point *A*. Assuming that there is no air resistance, calculate

(i) the time taken for the ball to travel from O to A ,	[3]
(ii) the distance OA.	[2]
	(Q2, Jan 2006)

PhysicsAndMathsTutor.com

4 A stone is projected horizontally with speed 7 m s^{-1} from a point *O* on the edge of a vertical cliff. The horizontal and upward vertical displacements of the stone from *O* at any subsequent time, *t* seconds, are *x* m and *y* m respectively. Assume that there is no air resistance.

(i) Express x and y in terms of t, and hence show that $y = -\frac{1}{10}x^2$.	[4]
The stone hits the sea at a point which is 20 m below the level of O.	

(ii) Find the distance between the foot of the cliff and the point where the stone hits the sea. [2]
(iii) Find the speed and direction of motion of the stone immediately before it hits the sea. [6]
physicsandmathstutor.com (Q6, Jan 2006)

5 A small ball is projected at an angle of 50° above the horizontal, from a point *A*, which is 2 m above ground level. The highest point of the path of the ball is 15 m above the ground, which is horizontal. Air resistance may be ignored.

(i) Find the speed with which the ball is projected from <i>A</i> .	[3]
The ball hits a net at a point B when it has travelled a horizontal distance of 45 m.	
(ii) Find the height of B above the ground.	[6]
(iii) Find the speed of the ball impervisions and maths through the met.	[4]

- 6 A missile is projected with initial speed 42 m s^{-1} at an angle of 30° above the horizontal. Ignoring air resistance, calculate
 - (i) the maximum height of the missile above the level of the point of projection, [3]
 - (ii) the distance of the missile from the point of projection at the instant when it is moving **downwards** at an angle of 10° to the horizontal. [11]

(Q8, Jan 2007)

(Q7, June 2006)

7 Calculate the range on a horizontal plane of a small stone projected from a point on the plane with speed 12 m s^{-1} at an angle of elevation of 27° . [4]

(Q2, June 2007)

8 A ball is projected from a point *O* on the edge of a vertical cliff. The horizontal and vertically upward components of the initial velocity are 7 m s^{-1} and 21 m s^{-1} respectively. At time *t* seconds after projection the ball is at the point (*x*, *y*) referred to horizontal and vertically upward axes through *O*. Air resistance may be neglected.

(i) Express x and y in terms of t, and hence show that $y = 3x - \frac{1}{10}x^2$. [5]

The ball hits the sea at a point which is 25 m below the level of O.

(ii) Find the horizontal distance between the cliff and the point where the ball hits the sea. [3]

(Q4, June 2007)

PhysicsAndMathsTutor.com

- **9** A ball is projected with speed 12 m s^{-1} at an angle of elevation of 55° above the horizontal. At the instant when the ball reaches its greatest height, it hits a vertical wall, which is perpendicular to the ball's path. The coefficient of restitution between the ball and the wall is 0.65. Calculate the speed of the ball
 - (i) immediately before its impact with the wall, [2]

(Q1, Jan 2008)

- **10** A missile is projected from a point *O* on horizontal ground with speed 175 m s^{-1} at an angle of elevation θ . The horizontal lower surface of a cloud is 650 m above the ground.
 - (i) Find the value of θ for which the missile just reaches the cloud. [3]

It is given that $\theta = 55^{\circ}$.

- (ii) Find the length of time for which the missile is above the lower surface of the cloud. [5]
- (iii) Find the speed of the missile at the instant it enters the cloud.

(Q7, Jan 2008)

[4]

11 A golfer hits a ball from a point *O* on horizontal ground with a velocity of 35 m s^{-1} at an angle of θ above the horizontal. The horizontal range of the ball is *R* metres and the time of flight is *t* seconds.

(i) Express *t* in terms of θ , and hence show that $R = 125 \sin 2\theta$. [5]

The golfer hits the ball so that it lands 110 m from O.

(ii) Calculate the two possible values of *t*.

(Q4, June 2008)

[5]

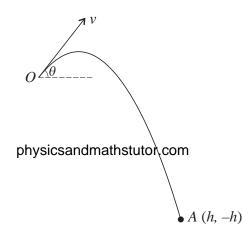
12

Two small spheres A and B of masses 2 kg and 3 kg respectively lie at rest on a smooth horizontal platform which is fixed at a height of 4 m above horizontal ground (see diagram). Sphere A is given an impulse of 6 N s towards B, and A then strikes B directly. The coefficient of restitution between A and B is $\frac{2}{3}$.

the speed of *B* after it has been hit by *A* is 2 m s^{-1} .

Sphere *B* leaves the platform and follows the path of a projectile.

(ii) Calculate the speed and direction of motion of *B* at the instant when it hits the ground. [7]


(Q7, June 2008)

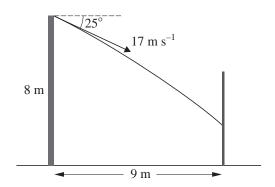
13 A stone is projected from a point on level ground with speed 20 m s^{-1} at an angle of elevation of θ° above the horizontal. When the stone is at its greatest height it just passes over the top of a tree that is 17 m high. Calculate θ . [4] physicsandmathstutor.com

(Q1, Jan 2009)

- **14** A particle is projected from a point O with speed $v \text{ m s}^{-1}$ at an angle of elevation θ above the horizontal and it moves freely under gravity. The horizontal and upward vertical displacements of the particle from O at any subsequent time, t seconds, are x m and y m respectively.
 - (i) Express x and y in terms of θ and t, and hence show that

$$y = x \tan \theta - \frac{4.9x^2}{v^2 \cos^2 \theta}.$$
 [4]

The particle subsequently passes through the point A with coordinates (h, -h) as shown in the diagram. It is given that v = 14 and $\theta = 30^{\circ}$.


(ii) Calculate <i>h</i> .	[4]
(iii) Calculate the direction of motion of the particle at A.	[5]

(iv) Calculate the speed of the particle at A.

(Q6, Jan 2009)

[2]

A ball is projected with an initial speed of 17 m s^{-1} at an angle of 25° below the horizontal from a point on the top of a vertical wall. The point of projection is 8 m above horizontal ground. The ball hits a vertical fence which is at a horizontal distance of 9 m from the wall (see diagram).

(i) Calculate the height above the ground of the point where the ball hits the fence.

[5]

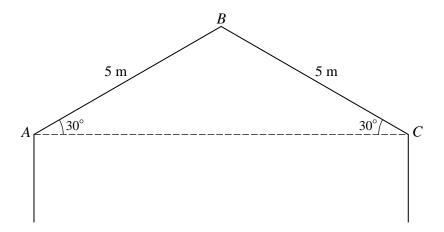
- (ii) Calculate the direction of motion of the ball immediately before it hits the fence.
- (iii) It is given that 30% of the kinetic energy of the ball is lost when it hits the fence. Calculate the speed of the ball immediately after it hits the fence. [4]

(Q7, June 2009)

 V_1 V_1 QQ V_1 V_1 V_1 V_1 V_1 V_1 V_1 V_2 V_1 V_1 V_2 V_1 V_1 V_2 V_1 V_2 V_2 V_1 V_2 $V_$

A particle *P* is projected with speed $V_1 \text{ m s}^{-1}$ at an angle of elevation θ_1 from a point *O* on horizontal ground. When *P* is vertically above a point *A* on the ground its height is 250 m and its velocity components are 40 m s^{-1} horizontally and 30 m s^{-1} vertically upwards (see diagram).

(i) Show that $V_1 = 86.0$ and $\theta_1 = 62.3^\circ$, correct to 3 significant figures. [5]


At the instant when P is vertically above A, a second particle Q is projected from O with speed $V_2 \text{ m s}^{-1}$ at an angle of elevation θ_2 . P and Q hit the ground at the same time and at the same place.

(ii) Calculate the total time of flight of *P* and the total time of flight of *Q*. [4]

- (iii) Calculate the range of the particles and hence calculate V_2 and θ_2 . [8] physicsandmathstutor.com (Q6, Jan 2010)
- 17 A particle is projected horizontally with a speed of 7 m s^{-1} from a point 10 m above horizontal ground. The particle moves freely under gravity. Calculate the speed and direction of motion of the particle at the instant it hits the ground. [6]

(Q1, June 2010)

A small ball of mass 0.2 kg is projected with speed 11 m s^{-1} up a line of greatest slope of a roof from a point *A* at the bottom of the roof. The ball remains in contact with the roof and moves up the line of greatest slope to the top of the roof at *B*. The roof is rough and the coefficient of friction is $\frac{1}{2}$. The distance *AB* is 5 m and *AB* is inclined at 30° to the horizontal (see diagram).

(i) Show that the speed of the ball when it reaches B is 5.44 m s^{-1} , correct to 2 decimal places. [6]

The ball leaves the roof at *B* and moves freely under gravity. The point *C* is at the lower edge of the roof. The distance *BC* is 5 m and *BC* is inclined at 30° to the horizontal.

(\mathbf{ii}) Determine whether or not the ball hits the roof between	<i>B</i> and <i>C</i> . [7]
physicsandmathstutor.com	n (Q7, June 2010)

19 A small ball *B* is projected with speed 14 m s^{-1} at an angle of elevation 30° from a point *O* on a horizontal plane, and moves freely under gravity.

(i) Calculate the height of	<i>B</i> above the plane when moving horizontally.	[2]
()		

B has mass 0.4 kg. At the instant when *B* is moving horizontally it receives an impulse of magnitude *I* N s in its direction of motion which immediately increases the speed of *B* to 15 m s^{-1} .

(ii) Calculate <i>I</i> .	[3]
For the instant when B returns to the plane, calculate	
(iii) the speed and direction of motion of B ,	[4]
(iv) the time of flight, and the distance of B from O .	[5]
physicsandmathstutor.com	(Q6, Jan 2011)

20 A particle is projected with speed 7 m s^{-1} at an angle of elevation of 30° from a point *O* and moves freely under gravity. The horizontal and vertically upwards displacements of the particle from *O* at any subsequent time *t* s are *x* m and *y* m respectively.

(ii) Calculate the values of x when y = 0.6.

[4]

(iii) Find the direction of motion of the particle when y = 0.6 and the particle is rising. [4]

(Q5, June 2011)

21 A particle *P* is projected with speed 40 m s^{-1} at an angle of 35° above the horizontal from a point *O*. For the instant 3 s after projection, calculate the magnitude and direction of the velocity of *P*. [5]

(Q1, Jan 2012)

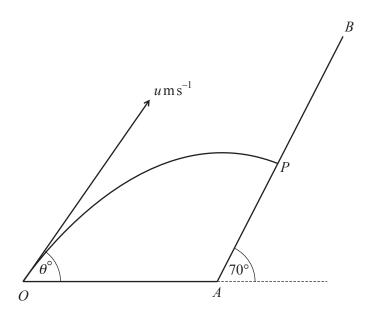
- **22** A particle *P* is projected horizontally with speed 15 m s^{-1} from the top of a vertical cliff. At the same instant a particle *Q* is projected from the bottom of the cliff, with speed 25 m s^{-1} at an angle of θ° above the horizontal. *P* and *Q* move in the same vertical plane. The height of the cliff is 60 m and the ground at the bottom of the cliff is horizontal.
 - (i) Given that the particles hit the ground simultaneously, find the value of θ and find also the distance between the points of impact with the ground. [6]
 - (ii) Given instead that the particles collide, find the value of θ , and determine whether Q is rising or falling immediately before this collision. [9]

(Q7, Jan 2012)

- **23** A boy throws a small ball at a vertical wall. The ball is thrown horizontally, from a point O, at a speed of $14.4 \,\mathrm{m \, s}^{-1}$ and it hits the wall at a point which is 0.2 m below the level of O.
 - (i) Find the horizontal distance from *O* to the wall. [4]

The boy now moves so that he is 6m from the wall. He throws the ball at an angle of 15° above the horizontal. The ball again hits the wall at a point which is 0.2m below the level from which it was thrown.

- (ii) Find the speed at which the ball was thrown.[6]physicsandmathstutor.com(Q4, June 2012)
- **24** A particle is projected with speed $u \,\mathrm{m}\,\mathrm{s}^{-1}$ at an angle of θ above the horizontal from a point *O*. At time *t* s after projection, the horizontal and vertically upwards displacements of the particle from *O* are *x* m and *y* m respectively.
 - (i) Express x and y in terms of t and θ and hence obtain the equation of trajectory


$$y = x \tan \theta - \frac{g x^2 \sec^2 \theta}{2u^2}.$$
 [4]

In a shot put competition, a shot is thrown from a height of 2.1 m above horizontal ground. It has initial velocity of 14 ms^{-1} at an angle of θ above the horizontal. The shot travels a horizontal distance of 22 m before hitting the ground.

- (ii) Show that $12.1 \tan^2 \theta 22 \tan \theta + 10 = 0$, and find the value of θ . [5]
- (iii) Find the time of flight of the shot.

(Q7, Jan 2013)

[2]

The diagram shows a surface consisting of a horizontal part OA and a plane AB inclined at an angle of 70° to the horizontal. A particle is projected from the point O with speed $u \text{ ms}^{-1}$ at an angle of θ° above the horizontal OA. The particle hits the plane AB at the point P, with speed 14 ms^{-1} and at right angles to the plane, 1.4 s after projection.

(i) Show that the value of u is 15.9, correct to 3 significant figures, and find the value of	f θ. [7]
(ii) Find the height of P above the level of A .	[3]
The particle rebounds with speed $v \mathrm{m s}^{-1}$. The particle next lands at A.	
(iii) Find the value of v .	[5]
(iv) Find the coefficient of restitution between the particle and the plane at <i>P</i> .	[1]
	(Q7, June 2013)